Vous constatez une erreur ?
NaN:NaN
00:00
Mel-filterbanks are fixed, engineered audio features which emulate human perception and have been used through the history of audio understanding up to today. However, their undeniable qualities are counterbalanced by the fundamental limitations of handmade representations. In this talk, I will present LEAF, a new, lightweight, fully learnable neural network that can be used as a drop-in replacement of mel-filterbanks. LEAF learns all operations of audio features extraction, from filtering to pooling, compression and normalization, and can be integrated into any neural network at a negligible parameter cost, to adapt to the task at hand. I will show how LEAF outperforms mel-filterbanks on a wide range of audio signals, including speech, music, audio events and animal sounds, providing a general-purpose learned frontend for audio classification.
28 octobre 2024 00:32:44
28 octobre 2024 00:29:57
28 octobre 2024 00:20:33
28 octobre 2024 00:20:36
29 avril 2021 00:30:04
28 octobre 2024 00:26:39
17 mai 2021 00:20:20
28 octobre 2024 00:47:23
28 octobre 2024 00:21:30
Vous constatez une erreur ?
1, place Igor-Stravinsky
75004 Paris
+33 1 44 78 48 43
Du lundi au vendredi de 9h30 à 19h
Fermé le samedi et le dimanche
Hôtel de Ville, Rambuteau, Châtelet, Les Halles
Institut de Recherche et de Coordination Acoustique/Musique
Copyright © 2022 Ircam. All rights reserved.