Dai Fujikura

Prism Spectra
for viola & live electronics

Commissioned by Ircam/Centre Georges Pompidou
World premiere performed in June 2009 at Auditorium du Musée
d'Orsay (Paris)

Viola : Odile Auboin

Computer music designer : Manuel Poletti
Sound ingeneer : Gérard Delhia

Duration : 18 mn

This documentation describes the procedures needed to install, setup and per-
form the live-electronics used in the piece.

About the live-electronics

In section 1, 5 and 6, the musician is constantly "followed" by the live electronics, which
perform a kind of sound extension of the live instrument. They perform some spatialized
live effects such as granulation, harmonization, delays, frequency shifting, filtering...,
which continuously improvise (given certain contraints) "around" the live sound, in order
to produce an homogenic overall material, together with the live sound.

In addition, pitch, attack and amplitude detection is performed, in order to modulate the
density and the choice of the improvisation of the treatments, and their spatialization.
There are also some independant algorithms that will reverberate or not a given channel
of a given module at a given time, as well as the live instrument. In section 3, the musi-
cian triggers a semi-random collection of viola pre-recorded samples each time the
computer detects that a string is attacked. Sections 2 and 4 are made of soundfiles that
will accompany the player like if there was an string ensemble playing.

To summarize the approach of the live electronics design, we could say that a maxi-
mum of flexibility (with musical constraints) was put into the control of the modules, in
order to get an "organic" sound material, which remains close to the instrument sound.
They will sound slightly different at each performance.

About the live electronics performer

The live-electronics performer should take care of the following (described in details be-
low) :

- install and setup the MaxMSP application, as well as the specific MaxMSP resources
contained in the archive.

- launch the performance patch and setup some settings (gains, MIDI pedal...)

- trigger the cues (or events) during the performance, according to the score

- cues might be triggered by the musician on stage, using a MIDI trigger pedal : in this
case, the live electronics performer follows the events and corrects the eventual mis-
takes from the musician

- cues are mentionned as numbers in the original score, which are reported within the
patch

System requirements

- 1 Macintosh Intel MacPro computer 4X 2.5 GHz (minimum), with 1 Gb RAM (mini-
mum), running OSX 10.5 or later - the patch will NOT perform well (lack of CPU re-
sources) with an Intel MacBookPro 2.4 GHz, for instance, but may work on latest
MacBookPros.

- 1 MaxMSP 4.6.3 or Max 5 or later application

- 1 soundboard able to output 6 separate audio channels (ex : RME Fireface 400), with

1 MIDI input

- an appropriate wireless and classA microphone - a wireless DPA was used at the

premiere

- 1 mixing console with up to 8 separate output audio busses

- 6 loudspeakers (ex : 600 W) & appropriate P.A (including subwoofers)

- 1 MIDI trigger pedal

About the sound

All sound material, except for the live sound, is spatialized over 6 speakers. One should
amplify the live sound using the two frontmost speakers (1 & 2 below). The shape of the
overall plan formed by the speakers should be similar to a classical 5.1 system, except
that the center point is synthesized by the two frontmost speakers, rather by only one
speaker.

Dacl stage Dac2

<) <)

Dac3 performer Dacd

| < <)

audience

DacS Dacé

) <)

- Viola microphone goes to adc 1

- dac1 goes to loudspeaker 1 (preferably matrix of loudspeakers)
- dac2 goes to loudspeaker 2 (idem)
- dac3 goes to loudspeaker 3 (idem)
- dac4 goes to loudspeaker 4 (idem)
- dacb goes to loudspeaker 5 (idem)
- dac6 goes to loudspeaker 6 (idem)

It is highly recommended to diffuse the electronics to a matrix of triples of loudspeakers
rather than assigning each computer dac to one loudspeaker. This means that, for ex-
ample, the Dac 1 from the computer soundboard should be sent to speaker 1, and to
speaker 2 and 3, with around 3/6 dBs energy less in speakers 2 and 3 than in speaker
1. Then, Dac2 should be sent to speaker 2, and to speaker 1 and 4, with around 3/6
dBs less energy in speakers 1 and 4 than in speaker 2. And so on (triples : 3+1/5, 4+2/
6, 5+3/6, 6+4/5) , until the electronics sound "spatial" and "smooth".

The player should have a pair of stage monitors, in order to hear a mix of the live elec-
tronics while performing.

Contents

The archive contains all resources needed to perform the live-electronics of the piece
within MaxMSP.

The MaxMSPConcert folder contains everything needed for running the concert patch.
Inside that folder, there are two main Max documents :

These patches are the performance patches :

- PrismSpectraMax4UB runs under Max 4.6.3

- PrismSpectraMax5 runs under Max 5 and later

Select the Max4 or Max5 version according to the version of MaxMSP you have.

Installation

- download and install MaxMSP 4.6 or 5

- copy the content of the archive somewhere in a folder on your hard disk

- launch MaxMSP

- declare the folder containing the concert patches and their related files in the Max file
preferences, as follows (for instance) :

O OO File Preferences (D)

Startup Folder max-startup

Help Folder |./max-help | [Choose]

Timeline
Action Folder

tidction

{folders inside these folders will be searched)

[patches | [choose |
[.7examples | [choose |
[System:/Users/User /Desktop/Fujikura/PrismSpectra/ | [chosse |
Other Folders | | [Choose |
| | o
| | o)
| | (o)
| | (o)

Path List | Print | PrintCurrent File Paths in Max Window

- set the DSP status (using the driver of your soundboard) as follows :

OO O DSP Status (@)

Audio off | &
Driver [Core Audio Hammerfall DSP Digifac... |
Input Device [Hammerfall DSP Digiface (1)

o

Input Source
QOutput Destination
Playthrough Input

ololo)

CPU Utilization : % [APoll [T]Update 060060

Function Calls

Signals Used

0

[iomap]

Input Mapping Output Mapping
Chan Group Chan Group

Sampling Rate [CJoverride
Input Channels

Output Channels

1/0 Vector Size [Joverride
Signal Yector Size [Joverride

| 1 input
| 2 input
3 input
| S input
| 6 input
| 7 input
| 2 input
Input Channel 1 [Joverride @
Input Channel 2 [Joverride @
Output Channel 1 [Joverride (input
Output Channel 2 [Joverride @
Optimize [Joverride @
CPU Limit [0 = [T]over [override m
| 15 input
Audio Driver Setup | [1/0 Mappings | (16 input

»

2 output

4

Max Scheduler in Overdrive [Joverride
Scheduler in Audio Interrupt [CJoverride

& output
7 output
8 output

Ly B B N

1
2
3
4
S
6
7
8
9

- et s ma -
B NN = O

-
W

Lieleleielelelelelieleleleleliel)

-
o

Quit and relaunch MaxMSP in order to validate the preferences.

DSP Patch

Launch the PrismSpectraMax4UB or PrismSpectraMax5 patcher file, according to the
version of Max (4 or 5) you're using; The Max4 patcher should look like this (the Max5

patch is equivalent) :

trig Sect disp.

Sec3

12[0]F i1
13 [|[pSeci=15
|4EpSeo =17
e e
[E P sect-o7 o] 128 [][m Sect1-35 |

b Sec2-06

=

=
q@nm=a Ol @
M el

nn EEEEEE

® MaxMSP File Edit View Object Font Options Trace Extras Window Help @™ & D M = ¢ o pn = aoc
o000 [Events] =
MIDI pedal
Events tm’ Events collection enable otrl __polarity
after editing... (64 2](down 2]
trigger dec current/set inc follow passed goto [open J[renumber =1 | reorder... port info
tan (‘ (— [ritesgan] . and save PR Jpioo0] heions)
Space g < O > [- to disk
enter | \ [col DATevents coll | Event -1
Tt ———arrows ———— > right Freturn Stop events Resetdsp
...
. — [STOP bar
EVENT : 1 Sec1-01 bang sve:[16525001 | el

poecszi]
29 lﬂrpﬁﬁl 5o 7T e 1] so [y sweeea 1] 52 [T escen
PrismspectraM e

®.0.0)
Emu] Ades @ @ B W Sfplayers Sampler Reverb DSP
Viols Svpl Svpz 5Vp3 Svp4 Sndl L RS2 LR SndZ LR Snd4 LR Samp 123456 Rev 123456
)
w = =
VUs
ff > [Xlicpu
orange
(2 leds) 0 %
m 127 piz7] 127 [P 127]|
[Control Conil’ol win Contl’ol wln l:on(rol win l:ontrol win

Transposition Resonance Granulation change randem effect
Widons
>Hrm LR >er LR > >rﬂ L >Res >sa| L >De| L >Mun|LR >Mun2LR
= Control L
R
Resetall
Core :
S
Slop all
brz7] pr27] Br27] prz7] pri7] prz7] prz7] Biz7] °'°s° B 'v-'~f?
Control [Controlwin | cmrol win Control win l:ontrol win Contral win Control win Conlrol [Controlwin | l:orm-ol win l:ontrol win I-Pjah STOP bang

In order to verify if preferences files are correct, open the Max window, which should

look like this :

Max

000

© 1990-2006 Cycling ‘74 / IRCAM

samplor™: version 1.99 (Mar 3 2009)

coll: finished, 37 lines

supervp.trans™, SuperVP for Max/MSP, version 2.12 (11/2008)
entirely based on Super¥P (version 2.96.17) by Axel Roebel

Max /MSP integration by Morbert Schnell, IRCAM - Centre Pompidou
rvbap v1.0, © 2003 by Olaf Matthes, based on vbap by Ville Pulkki
munger : maxdelay = 60000.000000 milliseconds

runger : number channels = 2

munger : maxdelay = 60000.000000 milliseconds

runger : number channels = 2

Spat™: version 3.4.1 for Max/MSP - IRCAM

- Spat™ extern lib :
: radiation -
: timecrit -
- Spat™ extern lib :
ramp4" -
samp 2" -
- Spat™ extern lib :
thishelf1™ -
- Spat™ extern lib :
: Be_early™ -

s hlshelf1™ & hishelf1v™ -
- Spat™ extern lib :
D panrg™ -
D panré -
:panc -

- Spat™ extern lib
- Spat™ extern lib

- Spat™ extern lib
- Spat™ extern lib

- Spat™ extern lib

- Spat™ extern lib
- Spat™ extern lib

- Spat™ extern lib
- Spat™ extern lib
- Spat™ extern lib

FC -

localisation -

Sc_cluster™ -

Sc-reverb™

Pan“control_ext -

Lob jects for Max © Peter Elsea and Regents of the University of California.

decaying-sinusoids™ 1 34lpha- Adrian Freed.

Copyright © 1996,97,98,99,2000,01 ,02 Regents of the University of California.

Maximum Oscillators: 256

Newver expires

bonk™ w1.3 Mach-0

win™ (pitch analysis), version 05/2005 (5)
by Norbert Schnell after Cheveigné/Kawahara
Copyright © 2003 CNRS/IRCAM - Centre Pompidou

coll: finished, 22 lines

coll: finished, 20 lines

coll: finished, 37 lines

rmunger : setting power: 0

munger : setting power: 0

samplescoll: read Odile-ric.coll

coll: finished, 24 lines

samplescoll: read Ve-batt.coll

coll: finished, & lines

samplescoll: read VYn-pizz-scrape.coll

coll: finished, 10 lines

samplescoll: read Yn-pizz-on-pieces.coll

coll: finished, 24 lines

samplescoll: read VYn-noise.coll

coll: finished, 11 lines

samplescoll: read Yn-hit.coll

coll: finished, 12 lines

samplescoll: read Va-wipe.coll

coll: finished, 12 lines

samplescoll: read Va-scrap.coll

coll: finished, 3 lines

samplescoll: read Va-pizz-on-pieces.coll

coll: finished, 8 lines

samplescoll: read Va-pizz-gliss.coll

coll: finished, 7 lines

samplescoll: read Va-on-pieces.coll

coll: finished, & lines

samplescoll: read Va-hit.coll

(- - - - - - - - - - - - - - - - - -

0006

Max

© 1990-2006 Cycling ‘74 / IRCAM

loaded:
loaded:
loaded :
loaded:
loaded:

loaded
loaded

loaded

loaded

loaded
loaded

loaded

loaded
loaded

loaded

sample vl-pz-beh.brdg-1l-p.aif
sample vl-pz-beh.brdg-1ll-f.aif
sample vl-pz-beh.brdg-Ill-p.aif
sample vI-pz-beh.brdg-1V-f.aif
sample vl-pz-beh.brdg-1V-p.aif

: sample vi-pz-lh-ric-l.aif
:sample vl-pz-lh-ric-1l.aif
loaded:
loaded:
loaded:
loaded:
loaded:
loaded:

sample vl-pz-lh-ric-lll.aif
sample vl-pz-lh-ric-IY.aif
sample vl-pz-pap.clp-1-f.aif
sample vl-pz-pap.clp-l-p.aif
sample vI-pz-pap.clp-1l-f.aif
sample vl-pz-pap.clp-ll-p.aif

: sample vi-pz-pap.clp-1lI-f.aif
loaded :
loaded:
loaded:
loaded:
loaded:
loaded:

sample vl-pz-pap.clp-lll-p.aif
sample vl-pz-pap.clp-IV-f.aif
sample vl-pz-pap.clp-IV-p.aif
sample vl-pz-peq.bx-Ill.aif

sample vl-pz-screw-qls-laif
sample vl-pz-screw-qls-1l.aif

: sample vi-pz-screw-gls-lllLaif
loaded:
loaded:
loaded:
loaded:
loaded:
loaded :
loaded:
loaded:
loaded:
loaded:
loaded:
loaded:
loaded:

sample vl-<->-11-ff.aif

sample vl-<=>=ll-mf.aif

sample vl-<->-Il-pp.aif

sample vl=<=>=IlI-ff.aif

sample vI-<=>=Ill-mf.aif

sample vl-<->=Ill-pp.aif

sample vl-<=>-IV-ff aif

sample vl-<->=I\-mf.aif

sample vl-<->-I\-pp.aif

sample vl-scrap.aif

sample ve-cl-bat-sal-p>t-l-v1 aif
sample ve-cl-bat-sal-p>t-ll-v1 aif
sample ve-cl-bat-sal-p>t-1ll-v1 aif

: sample ve-cl-bat-sal-p>t-IV-v1 .aif
:sample ve-cl-bat-sal-t>p-Il-v1 aif

loaded:
loaded:
loaded :
loaded:
loaded:

sample ve-cl-bat-sal-t>p-ll-v1 aif
sample ve-cl-bat-sal-t>p-lll-v1 aif
sample ve-cl-bat-sal-t>p-I¥-v1 aif
sample DAl Impacts 020.aif
sample DAl Impacts.021 aif

:sample DAL Impacts 022 aif
loaded:
loaded:
loaded:
loaded:
loaded:
loaded:
loaded:

sample DAl Impacts. 023 aif
sample DAl Impacts.024 aif
sample DAl Impacts 025 aif
sample DAl Impacts. 026 aif
sample DAl Impacts 027 aif
sample DAl Impacts. 028 aif
sample DAl Impacts.034 aif

: sample DAl Impacts 035 aif
:sample DAl Impacts 036 aif
loaded:
loaded:
loaded:
loaded:
loaded:
: sample DAl Impacts. 042 aif
loaded:
loaded:
loaded:
loaded:
loaded:
loaded :

sample DAl Impacts 037 aif
sample DAl Impacts. 038 aif
sample DAl Impacts 039 aif
sample DAl Impacts.040.aif
sample DAl Impacts.041 aif

sample DAl Impacts. 043 aif
sample DAl Impacts. 044 aif
sample DAl Impacts. 045 aif
sample DAl Impacts.046 aif
sample DAl Impacts 047 aif
sample DAl Impacts.048 aif

(, -

If the Max window prints some errors, then you probably have a conflict in your Max
Search Path and should check the Preference Files again.
Events Subpatcher

If you double-click on the Events subpatcher box located in the main patcher
patcher file...

Control
p Events

...the Events window is brought to the front. This is the place where the cues are trig-
gered from, in the case where the performer won't trigger the cues using the pedal.

O 00O [Events] =
MIDI pedal

EV entS '.:eyb' Events collection enable ctrl polarity
eys £
after editing... down % |
triggel dec current/set inc follow passed goto "’P?”m] A port [to MaxMSP 1 ry E info

8 - et [T (e vy speed
- SINC -1 N i e
enter | k

to disk

[cell DAlevents coll | Event -1

left <=----- arrows —==--= > right 2%return Stop events Resetdsp

(e
EVENT : 1 Sec1-01 bang N e
Save patch [MainPatoh write

trig Sec1 disp. Sec2 Sec3
1 |[Dlp Sect =01 || 12| flp SecT-14 || 23 |7 |lp Sec1 43 ||(T | 33 |7 [lp Sec2-01 ||| 44 |7 [[p Sec3-01 |7 |
2 [CleSeroz][0 13[C [pSecT TS O] 24 [€ [pSecTaa |[€] 54 [] Secz06] 45 [€ [leSec3 07 || 53 [
3 [CfpSeeoz O] 14 [C [pSeciT7 €] 25 [C [Seeide €] 5 [€ [Secz 0 [] 46 [€ pSecTa][] 54
‘ 3R] e o P) s R e
| N e @ o o P o R e s G
¢ [Flrersee] v] = e M e @ A WY
1o [t o [Jpeee i o [Jp oo e oz [[poeree N
' o] 2 [ez | s pen]r] - P T

Secd4 Sech Sec6

59 [|[eSecd-01][] 6e [0][p Sect138]0 | 76 ﬂ 77 [|Sect01 7] a5 [F][p Sece-11 |0
60 [|[pSecd-018]] 69 [|[p Seet14 & 78 [0][pSece018] 0 | 86 [|[p Sece-12 || |
o1 [Jpoeere] v e s [lpeeee e [e
ce [lpere]e]| [e oo [Jpee] oo [Jpreto
e [Pl v [Jreree o1 [fpee]e] o [pee e
e A s ez [Flpeee e o[Jrete e
e [Jpmmero T o [e @i G
ce [l]| [l o T 2 [
o Flpeeer]

To start the piece :

Turn DSP on in the main patcher :

DSP

VUs
CPU
0 %

s
dsp status
)

Press the event "-1"button in the Events window, which performs a complete ini-
tialization of the whole patch :

EV ents Al Events collection

after editing...
trigger dec current/set inc follow passed goto Iopen ||renumber =i Ireorder...

tab - writeagain | ... and save
space /_ <I-T > ><“(- \/_ o disk

enter |~
|coll DAlevents.coll |

left < aArrows > right 2%return

EVENT : -1 RESET bang . =

Trigger event "0" using the "trigger button", which performs a local initialization of the
event patch :

trigger dec current/set
tab r
space || <
enter |-
left <====-- aArrows —==-=

You're ready to play the piece (event 1 and others).

Mixing

The events patcher was designed in order to set the gains of the different modules from
the DSP patch automatically.

One shouldn't have to control them during the performance but, according to the live
conditions, you may want to adjust the output levels of the modules.

To do so, use these sliders :

Adecs@ O O O Sfplayers Sampler Reverb
Viola Svpl Svp2 Svp3 Svp4 Sndi L R Snd2 L R SndZ LR Snd4 L R Samp 123456 Rev 123456
voa vca vca

ff=>

orange

(2 leds)
12? 127 127 12'!l 127 117

Control Controlwm Controlwm Controlwm Controlwm

Transposition Resonance Granulation

> Hrm > er

vca
I 27

L R > Fsh > Ffl > Res > Sdl R > Del > Mun1 LR > Mun2 L R

Control win Control win Control win Control win Control win Control win Con(rol win Control win Control win

Using a MIDI pedal to trigger events

If the performer triggers the events, you can set the pedal parameters from the event
patcher :

MIDI pedal

enable ctrl polarity

|64 :"down :I

port [to MaxMSP 1 info

[p PEDAL > 1000] fl'::i‘; 9

- enable : turn pedal action on/off

- ctrl : choose MIDI controller number (generally, trigger pedals output a controller 64)

- polarity : if necessary, inverse the polarity of the pedal : generally the event must be

triggered when the pedal is pressed (some pedals have inversed polarities)

- port : select the MIDI port to which the pedal is connected

- info : click to refresh the list of available MIDI ports

- speedlim : set the minimum time between two events, in order to avoid mistakes due
to wrong moves from the performer

Managing events

Events)l Events collection

after editing...
trigger dec current/set inc follow passed goto |°P°" |[renumber =1 I reorder...

tab writeagain | ... and save
=<1 PO e®

enter |*
|coll DAlevents.coll |

left < aArrows > right 2%return
(Faster_2)p0oe]
EVENT : -1 RESET bang stave IP : [169.254.0.1 |

When you start the piece from event -1 (global reset), then event 0 (local init), the next
events will trigger some soundfiles and open or close treatments.

To trigger each next event, either press the "trigger" button, or press the space, enter or
tab key from the computer keyboard :

trigge!

tab (
space |

enter |*

If you need to jump to a given event number, use the big numerical box to set the NEXT
event to be triggered the next time you will press the "trigger" button - use the inc/dec
buttons to scroll through the events (or use the left/right arrows from the keyboard) :

dec current/set inc
| im———=1 arrows —----- > right

Using inc/dec buttons can be very useful, in case the performer misses a trigger - in-
stead of trying to play the event (too lately), just set the next event to be triggered, then
wait for the next pedal.

By default, "keyboard keys" and event follower toggles are turned on : "follow" operates
as a gate when one tests the MIDI pedal, for instance : turn it off, and you'll see the
events being increased by the pedal, but the events themselves won't be triggered -
"keyboard keys" eventually prevents that no one accidentally triggers an event by touch-
ing the computer keyboard. The "passed" button indicates that an event had "passed"
the gate.

>< keyb. |
keys

If you're using a parallel spare machine, event triggers can be sent in parallel from the
master machine to another one using UDP via network. In both machines, select its
status (master or slave). In the master machine, enter the IP adress of the target spare
machine (visible in the System Preferences - sharing section). Then save the patch
again, in order to validate the target IP adress :

slave IP : |192.1628.0.2

How the patch works

Below is a description of the structure of the patch, which shows how the piece should
be performed, and what to take care of.

The core of the patch is an audio matrix, which allows the routing the audio input to
any effect or output. It stands, as well as all the modules connected to it within the
DSP~ subpatcher, and looks like this :

(]

® 00O [DSP~]

Input Effect: Soundfiles Sampler Central matrix control

Viola~ Hrm™ |[p Wrp™ |[p Fsh™ |[p FfI™ Muni™"| [p Mun2” 4%2ch Soundfiles™ p Samp™ mp.Matrix.ctrl Mix r RESET
Trarsp T | lpoame o/ |DRimicins ool =
H = [2 T A T A S S R T O Y Y i [FE H DAlLmix.outs.coll 10

i s A T A B A T S T T N 1 " T A it { .
Central § 7T T ! RN N TR T T T i b [i DAlmix.noloop.coll _|
matrix> [matrix~ 37 200, | [Emake-colls |

FA T |

N T W
H 7

Y
T ~ T 7 7 7 e)
e / s

ya—
endzSvez] EE T ETET
To effects Send™ SFeh~ Send~ sear Send™ SMunz”

Send” sSvpa~

Toadmess 100

G calG
Master gain [Ampedsp™ f
H

H H H
Core of the patch [anpeakiipter= 100 100 9]
= e |

f]
§ 7 i /i [anpeakiitaiter~ 100 1000 |

7
7 H
}‘ !.' H /’{ / En peaklimiter~ 100 100 0
H §
RN
! ld_ac" 234.96 ¢ 4 | Output

§ { i 7 i
thenar] [fmagr] /
]
| E ‘='Dacs>-\¢;%|~
[EDsesvor = Dacervi |

Basically, the Viola~ Adc will be routed to the other modules (Hrm~, Wrp~, Fsh~...)
through the matrix and using the send~ objects. In parallel, the output of the effect mod-
ules will be routed to the dacs through the matrix. There's also a global 6 channels re-
verb module, which will be mixed together with the output channels, 4*2 channels
soundfiles (DFD) players, and a 6 channels sample player (RAM).

The routing of the matrix is controlled and monitored using a graphic interface (accessi-
ble here in the mp.Matrix.ctrl object). One can display that interface from within the main

patch by clicking in that button :

which will open the Matrix window :

[mp.Matrix.ctrl]

® 0O
v| Reset emd-click on a cell, column or row header for connection/disconnection
Svp3 | Svpd | Hrml | HreoR | wrpl | wrpR | FshL | FshR | FAL | FfIR | ResL | ResR | SdiL | SdR | Dell | DelR |MuniL | MuniR | Mun2L | Mun2R | SndiL | SndiR | Snd2L | Snd2R | Snd3L | Snd3R | SnddL | SnddR | Smpt

Horizontally, you see the outputs of the modules to be routed to the inputs of other
modules, vertically. If you cmd-click on a cell, you will toggle between a connection level
(by default 0db) and a disconnection level (by default -127 dB). During the performance,
all connections are made automatically, so you shouldn't use that interface but for moni-

toring what's going on in the patch.

Each of the modules is accessible either by double-clicking on the objects within the
DSP~ subpatcher, or by clicking the "Control win" shortcut buttons within the main
patcher. Here, if we click on the "Control win" button below the "Hrm" gain slider at the
left bottom part of the patch, the window that contains the Hrm module opens up :

000 [Hrm~] |
Hrm1
power nl power n Hm2
in_|>144 del-max |[>10000 ms in 144 del-max 10000 ms
mix [[>127 del-win [>200 ms mix |[>127 del-win 200 ms
gain [>127 del-time |>0 ms qain [[>127 del-time (1] ms
Qlist del-fback |>0 Qlist del-fback |0
store |
stop m transp |0 me stop m transp >0 me
clear | [0 [shift b0 hz clear | 0] [shift b0 hz
Ireoeive“’ >Hrm“'|
' l rm ., [Tewn] ¥ RESET
Harmonzer ., . |
open window |l2:|zm02 dp” Arm1 1024 4 10000 | Hrmi reset; |
N Hrm R 3 . h IGlzm02 dsp~ Hrm2 1024 4 10000 | |5 Hrm2 Hrm2 reset |
Hrm=win front : 5
) i S,
! ,‘, “"\.
|5 Hrm-L >-VU?| B Hrm—R>—VU§|
p127] p132] b1z
Control win | Control win | Control win | ll:ontrol win | |Contro| win | |Contr'o| win | |Control win | |Contro

Each module has a dsp object (here 2 "Gizmo2.dsp" objects), with a receive~ object
(that is remotely linked to the matrix), and two "VU" send objects (used to monitor the
signal within the main patcher). The dsp objects have their corresponding interface,
which allows you to display and control the parameters.

Here is a list of the modules used :

Viola : the level control of the input signal - additionally, the signal is measured by three
detection modules : "yin" for pitch and amplitude detection, and 2 "bonks" for attack de-

tection.
Simul : can be used to play an input soundfile, in order to feed the patch and simulate

the action of the performer.
Svp 1 to 4 are "virtual" adcs, which transpose the input sound. These transposers are

used to simulate the presence of a virtual string quartet. They can be transformed by
the effects, just like the real sound :

smu] Adcs @ © © O

Vlola Svpl Svp2 Svp3 Svp4

Yin
Bonk
ff=>>
orange
(2 leds)
Bonk2 12? 12? 12? 12? 12?
Control Control wln

Sfplayers : 4 stereo DFD soundfile players that will play some pre-recorded soundfiles :

Sfplayers

Sndl L RSnd2 L RSnd3 L R Sndd L R

Control w in

Sampler : a 6 channels RAM sample player, whose samples are triggered by the attack
detection in Section 3.

Sampler
Samp 123 456

Contro | w in

Reverb : a 6 channels reverberator, that reverberates the overall electronics sound

Reverb
Rev 1 23 45 6

)

Contr‘ol wun

Dacs

Dacs : the overall dacs control

Effects : these effects transform the input sound and the "virtual" SVP string quartet
Hrm : a stereo FFT harmonizer/pitch shifter with feedback delay

Wrp : a stereo FFT "frequency warper" (compresses/expands the signal spectrum)

Fsh : a stereo frequency shifter

Ffl : a stereo FFT 250 bands filter with feedback delay

Res : a stereo FFT "resonator" (which is like the frequency warper with additional fea-
tures)

Sdl : a stereo FFT spectral delay

Del : a stereo multitaps delay

Mun1 & Mun2 : two stereo granulators

Dacs

i
0
o

i .
-~
i

Transpoﬁﬁon Resonance Granwaﬁon

> Hrm L R > Wr > Fsh > Ffl > Res > Sdl > Del > Mun1 LR > Mun2 L R

vca vca vca vca vca vca
127 127 12? 132 127 12? 127

127 1 17
Control win Control win Control win Control win Control win Control win Control win Control win Control win

The aim of the patch

The main idea behind the patch is that the live electronics should remain "capri-
cious". Thus, a set of Max objects (in addition of the dsp modules) were specially de-
veloped in order to fit that idea. These objects perform some random walks of dozen of
parameters for effects and matrix routing. They react to attack detection, and generate
rhythms which are relative to a global tempo. They're located in the Init subpatcher in
the Events window :

0
T

The whole process can be summarized as following :

The attack detector will try to follow the performer's impacts onto the instrument, in or-
der to perform some constraint random choices among the collection of sound treat-
ments. So, ideally, each time (s)he would hit the instrument, we could decide wether not
to route the incoming audio signal to such or such sound treatment. So the result for
each part of the piece would be always slightly different, given some constraints : at that
part, the signal might be routed to the harmonizer, or to the delay, or to none of them.
The parameters that describe the behaviour of the harmonizer and the delay should
also "move" given some constraints. There are several sections, for instance, which po-
tentially play with all effects, with "moving" parameters for each of them. What we tell to
the program in most of the events of the piece, is the constraint, rather than a precise
settings. We've extended that behaviour to many aspects of the audio rendering, for in-
stance : for each impact, any input (adc or effect) of the matrix will be routed or not to
the reverberator. Another use of the attack detection is to route randomly the outputs of
the modules towards the speakers : not "which" speaker, but rather "when" ("which" is
described below).

Note that all along the piece, not all input sound might trigger enough attack detections.
So, all random parameters have internal metronomes that can force them to change the
state of the effects. When an attack is finally detected, it will restart each metronome,
thus leaving the "dynamic" aspect of the interaction intact. If one thinks that a given
situation is not sounding very well, one can always trigger a new random choice by
clicking that button, and monitor its effect within the Matrix window :

change random effect

®Effect O trigger bang

The amplitude follower (Yin) is used for two main tasks, according to the above : tell
the matrix which loudspeakers the outputs of the effect modules should be sent to, and
how fast the random effect changes should occur. The constraint is easy : the louder the
input sound is, the "wider" the live electronic space will be, and the more effect changes
you get. The spatialization of the effects is calculated by loudspeakers pairing - basically
: piano sound will send the electronics to the front speakers, mezzo forte sound will
send them both to the front and side speakers, and forte sound will send them into all
speakers. The effect one should obtain is that the performer "projects" the electronics
across the room according to how loud (s)he plays.

Test it

In the Events/INIT subpatcher, you find all the settings that control the expected be-
haviour described above. In order to perform the test, turn DSP on and click in the but-
ton on the left.

o000 [INIT]

0

Save patch Resetdsp Stop events

5 ; ;
MainPatch write RESET bang STOP bang

fbang;
®Params 0 activate 1;
®Lists 0 activate 1

For random params For reverb

Rev crit Es -60.; stop delays 3

Rev crit Desl 0.; used in events [stop-delays stop
Rev crit Desh 0.;
Rev crit Rev -0.;

: ;
MainPatch write IGLOBAL-TEMPD 72 |

Rev fact revp 34; 4_

Rev fact env 24; -

Rev critRt 2.; bang;

Rev crit Dril 1.; ®Params 0 activate 0;

Rev crit Drth 0.25 ®Lists 0 activate 0;
®Ffl 0 metro-self 0;
®Sdl 0 metro-self 0
I

B®Effect O outputs none none ;

®Matrix i

E I ®Ffidel | [p ®Sdidel | [p ®Del | [p ®Mun1 | [p ®Mun?2 | ®Effect O trigger bang
andom

|n.‘1ltu-1|lnl)g All effects random params settings

Hrm Wrp Fsh Ffl Res Sdl Del Muni Mun2

=000 Jon Aan e e ers

effects matrixing

BEffect 1 outputs none Wrp

Here, you can see the overall settings for the whole piece. The Adc subpatch will set
the interactive part (attack and amplitude detection actions), the ®Matrix subpatch will
set the routing behaviour for the matrix, and other subpatches will set the random paths

of the parameters of each effect module.
Together with the INIT being triggered, all effect modules get activated - and remain so,

which explains the need for powerful machines :

Transpogﬁon Resonance Granwaﬁon

> Hrm L R > Wr > Fsh > Ffl > Res > Sdl > Del > Munl L R > Mun2 L R

vca vca voa vca vca vca
I 27 I 27 1 57 1 37 I 27

ontrolwm Contro wm Controlwun ontro wln Contro wun Control wm ontro wm Contro wm Contro wm

Calibrate the input sound

The detection and random treatments processes rely on the level of the input signal.
You should adjust the level of the adc in order to have at least 2 orange leds displayed
in the corresponding VU meter, when the performer plays fortissimo :

Simul | Ad cs

Viola

]lr

Yin
Bonk

ff=>>
orange
(2 leds)

Bonk2

ot [

Test random effects

Back to our INIT patch, by enabling the effects, you allow the program to route the
audio input to any of them, at "attack detection" time. You can also insert "none" selec-
tions, which means that the program might sometimes not route the signal to any effect.

Hrm “Wrp Fsh Ffl Res Sdl Del Munil Mun2 EI
N e Va4
[p I
1

Test random
effects matrxing

®Effect 1 outputs none Hrm Wrp Fsh none

Back to the DSP patch, click the "Bonk" button next to the Adc slider and open the at-
tack detection subpatch :

e 1 ouna - 1 1 1 1
o000 [Bonk] =
Bonk st stop I store | reoai |open 11 ;
Bonk reset
power on B Hints ;
I [T] D Bonk power on;
synth [[(clear) I EE Bonk synth off;
synth decay ||?50 Misc. Bonk synth decay 50;
Bonk in 127;
L Jprer Bonk gain 157;
P 127 [SPECTRAL ENVELOPE DISPL. | Bonk params thresh 50.60.; | resh i€ very
5 useful to filter
Bonk params minvel 7.; input detection (in
= Bonk params debounce 0. ; . .
AN ’ t
D OUTPUT DISPLAY Bonk params mask 4 0.7; ﬁ:is:y')npu s
thresh Instrument [1}
minvel 7. Yelocity 0. :
S eRolnae 0 Bonk power on;
5 Temperature 0. Bonk synth off;
mask 4. |poz Attack Bonk synth decay S0; attack
Bonk in 127; + Bonk-attack
Bonk gain 127; ——
Bonk params thresh S000 S000.;
Bonk params minvel 7.;
. Bonk params debounce 0.;
spectral env. these three work with templates Bonk params mask 4 0.7;
|r Bonk-envelope | [Bonk=inst | [r Bonk-vel | [r Bonk-temp |
| | | |
[orepend=set] [Tlpo | p71.0] pssz]

|
[O. 27.71393 0. 0. 11.913802 14.854939 16.674349 19.495125 20.2554 19.154921 12.]

open window

dsp module : arguments ;
TR S e Attack detector

On the rightmost part, you see the detected attacks triggering a click sound. Adjust the
level in order to monitor those attacks on front speakers (then set it back to 0 !).

Now, open the matrix interface :

You might see something like this :

P |mp.Matrix.ctrl]

Mix From Selection >0 d& v Qlist ¥ Reset emd-click on a cell, column or row header for connection/disconnection
v

vp2 | Svp3 | Svpd | Hrml | HrmR | Wrpl | WrpR FshL FshR FfIL FfIR ResL ResR SdiL SdIR DelL

Dact -10 0
Dac2 0 -10 0

DelR | MuniL | MuniR | Mun2L | Mun2R

SndiL | Snd1R

-10 0
0 -10

This can be analyzed like this : the Adc was (randomly) routed to the Wrp effect, is re-
verberated, and that the effects are (randomly) routed to all dacs - which means that the
player might have played with quite a lot of energy, as the sound is diffused over all

loudspeakers.

Selecting all effects here... :

Test random
effects matroxing

. is a good way to perform the gain level for each effect. If you would need to adjust

Hrm

“Wrp Fsh

Ffl Res

Sdl Del

Muni Munz |0

X

X

X

X

X

X

A X

NN

L L L

X
3

2] e

’
®Effect 1 outputs none Hrm Wrp Fsh Ffl Res Sdl Del Mun1 Mun2 none

them more precisely, simply de-connect the Adc detection in the INIT patch :

X

-

Set levels and detection

X

X

] b ®Hrm1 | |p ®Wrp1
®Matrix

B p ®Hrm2 | |p ®BWrp2

Random

matrixing

And route the signal by hand in the matrix Ul :

e e)

FIISIIDPECU AMAX4UB

-Adcsu 0O o ©o

- SpI Sp2 Svp! Sp4 SdILRSd2 LRSdZ L R S L Samp 1 23 45 6 Rv 123456
n
m e] i =3
[X] vus
.cpu
orange
(2 leds)
dp status|
m 127 piz7 | lp127]
Colﬂ ol C ntrol win C ntre len Control win C ntrol wi
h dom effect
Transposntlon Resonance Granulatlon changs random 2TTee
(®Effect 0 trigger bang Windows
> |_ >es LR sm LR >De| LR Mn|lR MnZLR i e front
[vea | =] Control =
Mix window front
Resetall
Core ;
S
D
=== | Slo| all
127 127 127 127 ||T 132 127 127
[Controlwin | [Controlwin | [Controlwin | [Controlwin | [Controlwin | [Control win [Control win [Control win l:‘ lllnPlnhwrih STOPbam

Sfplayers

Sampler

Reverb

Dacs

Feedback

All along the piece, it is rather difficult to predict which effect will be chosen at which
time. You may encounter, in very extreme conditions (when using an aerian microphone
for instance, which is not recommended) some feedback problems, especially when the
player is NOT playing : as the attack detection changes the routing of the audio input to
such or such effect, the system might not have the "time" to get into a feedback loop.
But if the player stops playing in the middle of a section, you might get a feedback, a
little bit like a guitar player letting the strings resonate in front of his amplifier. To avoid
any "bad" feedback, the sound engineer should keep a finger on the adc level (rather
than the dacs) during the performance, and raise it to 3/4 dBs when he "feels" that the
sound is getting "too much" into a loop, then gently going back to the original level. Ac-
cording to the system, the feedback shouldn't remain more than one or two seconds,
and thus, as it is hopefully nicely processed over effects, the feedback itself becomes a
musical part of the concept. During the premiere, we had "nice" feedbacks controlled by
the sound engineer - nice, because it participated to the dynamic/interactive overall as-
pects of the system.

Description of events

All events are briefly described internally within the corresponding subpatchers in the
Events window. We can't describe them all here, but here are some global indications :

Section 1 : transpose the input sound, and process it through effects

Section 2 : trigger soundfiles

Section 3 : settings for attack-detected RAM sample triggers, trigger DFD soundfiles
Section 4 : trigger soundfiles

Section 5 : process the input sound through effects

Section 6 : like Section 1, plus also process the transposed sound

